Physical and Chemical Properties Vocabulary Concept Drawings

Name			
Date	Period	Score	/4

Vocabulary Term	Drawing (with captions and colors) clearly identifies	
Physical Property	physical properties as any characteristic of a material that can be observed or attempted to be observed without changing the identity of the material.	
	Examples of physical properties are density reflectivity boiling point malleability freezing point conductivity magnetism size color	
Physical Change	a <u>physical change</u> as any change in size, shape, or state of matter in which the identity of the substances stays the same.	
	Physical changes which occur because of changes in temperature – freezing, boiling, melting, condensation	
Volume	<u>volume</u> as the amount of space an object occupies. Volume is a 3-dimensional	
	measurement of length, width, and height, and can be calculated or measured through displacement,	
	Volumes of solids and liquids change very little. Volumes of gasses have extreme variability	
Density	<u>density</u> is the mass per unit volume of an object (mass ÷ volume)	
	Detailed explanation/example of how density is calculated.	
	Comparison of more dense and less dense materials	
States of Matter	<u>states of matter</u> , whether a substance is a solid, liquid, or gas depends on the temperature of the substance.	
	Kinetic theory explains the relationship between particle movement within a substance and thermal energy	

Solid	a <u>solid</u> is a material which has tightly packed particles which move slow enough that the material maintains its shape	
	The particles of solid often have a specific geometric arrangement which affects the physical and chemical properties of the material	
Liquid	a liquid is a material which has particles which are less densely packed and faster than a solid and tend to move freely over each other	
	The particles of liquids flow out of arrangement as a result of additional kinetic energy to the point that they take the shape of the container they are in	
Gas	a gas is a material with very widely spaced particles that are moving very fast.	
	A gas is a material has enough kinetic energy to break the attraction between particles and can spread out to fill its container	
Plasma	<u>plasma</u> as a gas energized with charged particles. Examples of plasma in the universe (stars, lightening)	
Boiling Point	boiling point as the temperature which pressure of the vapor in the liquid is the same as the pressure on the surface	
	There is a difference between boiling and evaporation. <i>Heat of vaporization</i> helps explain the difference.	
Melting Point	melting point as the temperature when enough thermal energy has been added to a material for the particles to slip out of arrangement	
	Heat of fusion as the amount of energy required to change a material between a solid and a liquid	
	İ	

	T :	
Freezing	<u>freezing point</u> as the temperature	
point	when enough thermal energy has	
	been removed from a material for	
	the particles to slow down and	
	rearrange as a solid.	
	rearrange as a solid.	
	Hant of fraction in the consequent of	
	Heat of fusion is the amount of	
	thermal energy required to change	
	a material between a solid and a	
	liquid.	
	Freezing and melting point are	
	identifies as the same temperature.	
Chemical	a <u>chemical property</u> as a	
Property	characteristic of a substance that	
rioperty	indicates whether it can undergo a	
	certain chemical change (react).	
	certain chemical change (react).	
	Everyoles of make delable that have	
	Examples of materials that have	
	specific chemical properties – acids,	
	bases, flammable, corrosive,	
	oxidizer, reducer.	
Chemical	a chemical reaction as a process in	
reaction	which one or more substances	
(change)	(reactants) are changed into new	
(5.13.182)	substances (products)	
	Substances (products)	
	Examples of how a chemical change	
	may be detected – change in color,	
	new materials formed, release of	
	energy, flames	
Conservation	<u>conservation of mass</u> as the mass	
of Mass	of all substances that are present	
	before a chemical change equals	
	the mass of all the substances that	
	remain after the change	
	Where does the mass go if it seems	
	to "disappear"?	
	to alsappear .	