\qquad
\qquad Score \qquad /4

Hot Wheels: Part 2 Skill Builder

1. Which has more momentum, a 1000 kg car moving $30 \mathrm{~m} / \mathrm{s}$ or a 2000 kg truck moving $10 \mathrm{~m} / \mathrm{s}$? \qquad

2. Predict the outcome of this collision: A 75 kg tailback running $2 \mathrm{~m} / \mathrm{s}$ is hit directly by a 100 kg linebacker moving $1 \mathrm{~m} / \mathrm{s}$. \qquad

3. According to Newton's Second Law of Motion, Force $=$ \qquad X \qquad .
The equation for momentum is similar; Momentum (ρ) = \qquad X \qquad .

Summarize the relationship between force / momentum, speed of an object, and the mass of the object:
4. $\rho=m v$ is the formula for
A. Acceleration
B. Momentum
C. Force
D. Percussion
5. $F=m a$ is the formula for
A. Newton's First Law of Motion
B. Newton's Second Law of Motion
C. Force
D. B \& C are correct
6. Summarize the Law of Conservation of Momentum:
7. Momentum:
A. The change of rate of an object
B. Can be transferred from one object to another
C. Depends on mass and velocity
D. None of the above
E. $\quad B \& C$
8. Calculate the momentum of a 100 kg linebacker running $12 \mathrm{~m} / \mathrm{s}$
A. $\quad 12000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B. $\quad 1200 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C. $\quad 8.3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D. $\quad .12 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
9. Calculate the force of a 75 kg skydiver accelerating at the speed of gravity ($9.8 \mathrm{~m} / \mathrm{s}^{2}$). You should be able to figure this by estimating products.
A. 7.5 N
B. 7.65 N
C. 0.13 N
D. 735 N
10. A 50 kg student is skiing down a hill. Calculate and graph the momentum of the skier at the following velocities. Label the y axis (include units) and include a title:
$2 \mathrm{~m} / \mathrm{s}$
$4 \mathrm{~m} / \mathrm{s}$
$6 \mathrm{~m} / \mathrm{s}$
$12 \mathrm{~m} / \mathrm{s}$
$15 \mathrm{~m} / \mathrm{s}$
$20 \mathrm{~m} / \mathrm{s}$

11. A toy train runs consistently at $2 \mathrm{~m} / \mathrm{s}$. The engine weighs 2 kg and each additional car weighs 1 kg . Calculate and graph the following. Add all necessary labels and units. Include a meaningful title.
The engine alone
The engine +1 car
The engine +2 cars
The engine +4 cars
The engine +7 cars

